Will Software Save
Moore’s Law?




Moore’s Law Is Doomed

* Any exponential trend is doomed

* Do the math:
> Assume semiconductor chip = 1 gram

~ Assume “only” 6 x 10° transistors per chip today
> Assume transistor mass = proton mass

> Therefore at most 6 x 10 transistors per chip

> Therefore at most 10" improvement available
> |f we double every 2 years, that's about a century

» My grandchildren will surely see Moore’s Law fail
(but maybe they will see a new miracle)



We Do Have Lots of Computing Power

» Software can’t overcome Moore’s Law

» Wirth's Law Is merely a comment about how we
have chosen to spend our short-term bonanza

> We can spend computing cycles on:
> Getting results
> Safety, security, authentication, privacy
> Programmer productivity
> Repeatedly looking up 10,000 plug-ins
> Eye candy



Cycles Are Like Money

» Cycles today have more value than cycles tomorrow
* In any given situation, there is a discount rate
» Better productivity lets you deploy solutions sooner

» But Moore’s Law can overwhelm the discount rate
(more on this later)



Fortress Project: Big Idea #1

Make scientific programmers more productive
by using a more mathematical notation

Yes, it's been tried many times before, but:

» Now we have Unicode

- Now we have better parsers

* Now we have parametric, polymorphic types
 Now we better understand how to abstract




Simple Example: NAS CG Kernel (ascn

conjGrad(A: Matrix[/Float/], x: Vector[/Float/]):
(Vector[/Float/], Float)
cgit_max = 25
z: Vector[/Float/]
r: Vector[/Float/]
p: Vector[/Float/]
rho: Float = rAT r

for J <= seqU:cgitma) do  Natrix[/T/] and Vector[/T/] are

0
X
r

q=Ap . .

alpha = rh;» ﬁ PAT q parameterized interfaces, where

Z 1= Z + a a .

i a1,'§ha f, T is the type of the elements.

rho0 = rho

rho := rAT r .

beta = rho / rho0 The form x:T=e declares a variable x
b T betap of type T with initial value e, and
(z, lIx - Azl that variable may be updated using

the assignment operator :=.



Simple Example: NAS CG Kernel (ascn

conjGrad[/E1t extends Number, nat N,
Mat extends Matrix[/E1t,N BY N/],
Vec extends Vector[/E1t,N/]
/1(A: Mat, x: Vec): (Vec, E1t)
cgitmax = 25

z: Vec = 0
r: Vec = x . .
p: Vec = r Here we make conjGrad a generic
rho: E1t = rAT r : :
for j < seq(l:cgit_maxy do Procedure. The runtime compiler
q=Ap may produce multiple instantiations
alpha = rho / pAT q .
2 := z + alpha p of the code for various types E.
r :=r - alpha q
rho0 = rho
rho := rAT r The form x=e as a statement declares
beta = rho / rhoO . .
b i- r + beta p variable x to have an unchanging
end value. The type of x is exactly the

@ llx - AzlD type of the expression e.



Simple Example: NAS CG Kernel (unicode)

conjGrad[[E1t extends Number, nat N,
Mat extends Matrix[[E1t,NxN]],
Vec extends Vector[[E1t,N]]
T (A: Mat, x: Vec): (Vec, EIt)
cgit_max = 25

z: Vec = 0

r: Vec = x

p: Vec = r . _ _

A This would be considered entirely

0 J « seq(l:cgit_max) do . . .
q=Ap equivalent to the previous version.
LA You might think of this as an abbre-
ri=r-og viated form of the ASCII version, or
O o= AT you might think of the ASCII version
B=p/ po as a way to conveniently enter this
p:=r+fBp .

end do version on a standard keyboard.

return (z, |Ix - A z|)



Simple Example: NAS CG Kernel

conjGrad | Elt extends Number, nat N,
Mat extends Matrix[Elt, N XN |,

Vec extends Vector | Elt, N|

|(A:Mat, x:Vec):(Vec, Elt)

cgit .. =25

z:Vec =0

r:Vec = x

p:Vec=r

p:Elterr

for j — seq(1:cgit_ ) do
q=Ap
ye P
Py

zZ:=z+xp

ri=r—ogq
Po= P
T
pi=rr
p="~
Po

p:=r+pp
end
(z, [[x—Azl)

It's not new or surprising that code
written in a programming language
might be displayed in a conventional
math-like format. The point of this
example is how similar the code is to
the math notation: the gap between
the two syntaxes is relatively small.
We want to see what will happen if
a principal goal of a new language
design Is to minimize this gap.




Comparison: NAS NPB 1 Specification

z=0

r=x
T

p=rr

p=r

DO i=1,25
g=4p
«=pl(p q)
z=z+xp
Po =P
r=r—ogq

T

p=rr
B = plp,
p=r+Bp

ENDDO

compute residual norm explicitly: ||| =]|lx—Az||

z:Vec =0
r:Vec = x
p:Vec=r
p:Elt:rTr
for j — seq(1:cgit_. ) do
gq=Ap
P
X =
P q
z:=z4+ap
ri=r—oq
Py =P
T
p:=rr
_r
Py
p:=r+Bp
end

(z, [lx—Az])

10



Sun

microsystemns

Comparison: NAS NPB 2.3 Serial Code

nmmwmnnine
(=]
[=]
o
(=]

sum .0d0
do j=1,lastcol-firstcol+1
sum = sum + r(G)*r(j)

enddo
rho = sum
do cgit = 1,cgitmax
do j=1, Tastrow-firstrow+1
sum = 0.d0

do k=rowstr(j),rowstr(j+1)-1
sum = sum + a(k)*p(colidx(k))

enddo
w(j) = sum

enddo

do j= 1 lastcol-firstcol+1
ﬂ = w(j)

enddo

do j=1,lastcol-firstcol+1l
w(J) 0.0d0

enddo

sum = 0.0d0

do j=1,1astco1—firstco1+1
sum = sum + p(3)*q(j)

enddo

d = sum
alpha = rho / d
rho0 = rho

do j=1,lastcol-firstcol+1

(1) = z(j) + alpha*p(j)
ri3) = rQ3) - a1pha*q(J)
enddo
sum = 0.0d0

do j=1,lastcol-firstcol+1
sum = sum + r(jD*r(j)

enddo

rho = sum

beta = rho / rho0O

do j=1,lastcol-firstcol+l
p(i) = r(3) + beta*p(j)

enddo

enddo

do j=1,lastrow-firstrow+1
sum = 0.d0
do k=rowstr(j),rowstr(j+1)-1
sum = sum + a(k)*z(colidx(k))
enddo

w(j) = sum

enddo

do j=1,lastcol-firstcol+l
r(GG) = w(i)

enddo

sum = 0.0d0

do j=1,lastcol-firstcol+1l
d =x@G) - r(J)
sum = sum + d¥d

enddo

d = sum

rnorm = sqrt( d )

11



Fortress Project: Big Idea #2

Make application programmers more productive
with extensive libraries of good abstractions
for scientific programming

» Matrices and vectors, not just arrays

» Dense and sparse

* Intervals

* Need to support notation, not just data structures

12



Fortress Project: Big Idea #3

The language needed by library coders is different
from the language for application programmers

» Defining abstractions is more complex than using them
> Control over implementation details

> Control over parallelism

> Control over floating-point behavior

» Control over notation

» Generality, with control over special cases

> Code factoring and re-use are much more important

13



Fortress Project: Big Idea #4

A small team can’t do the whole job

» Define a compiler language that mostly consists of
general facilities for writing libraries

» Push most of the language definition into libraries
> Give libraries most of the control over syntax
* Include a component system for library mix-and-match

* Use static type analysis and dynamic compilation
to reduce the overhead of abstraction

14



It’s Actually Two Languages

* A framework for building mathematical languages for
large, possibly parallel computers

» A specific set of libraries that define a specific set of
notations and facilities

» We hope that others will provide additional libraries
and notations for specific application areas

15



Old Joke: How to Solve
an NP-Hard Problem of Size N

- Write a program that solves the problem in time k- 2N on
your current computer (we know how to do this)

- Wait 2N years

* Buy a new computer

By Moore's Law (?!), it runs the same program in time k
» Volla: you've solved the problem in time 2N+k = O(N)

» This ignores “discount rate” issues
» But: is deploying sooner always better?

16



When the Crunch Comes ...

» We will have some hard(er) decisions to make
» They will be economic in nature
» Productivity will become much more important

» As for using portable languages on oddball devices:
> Portability, like productivity, has benefits and costs
> |t can be done; sometimes it's worth it
> Fortress is not currently aimed at cell phones

17



guy.steele@sun.com



mailto:guy.steele@sun.com



